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Abstract

This paper summarizes recent results on applying the method of par-
tim least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A
previously proposed kernel PLS regression model .was proven to be com-
petitive with other regularized regression methods in R.KHS. The family
of nonlinear kernel-based PLS models is extended by considering the ker-
nel PLS method for discrimination. Theoretical and experimental results
on a two-class discrimination problem indicate usefulness of the method.

1 Introduction

The partial least squares (PLS) method I18, 19] has been a popular modeling,

regression and discrimination technique in its domain of origin--Chemometrics.

PLS creates orthogonal components (scores, latent variables) by using the ex-

isting correlations between different sets of variables (blocks of data) while also
keeping most-of the variance of both sets. PLS has proved to be useful in situ-

ations where the number of observed variables is significantly greater than the

number of observations and high multicollineacity among the variables exists.

This situation is also quite common in She ease of kernel-based learning where

the original data are mapped to a high-dimensional feature space corresponding
to a reproducing kernel Hilbert space (RKHS). Motivated by the recent results

in kernel-based learning and support vector machines [15, 3, 13] the nonlinear

kernel-based PLS methodology was proposed in [11]. In this paper we summa-

rize these results and show how the kernel PLS approach can be used for mod-

eling relations between sets of observed variables, regression and discrimination

in a feature space defined by the selected nonlinear mapping--kernel function.
We further propose a new form of discrimination based on a combination of

the kernel PLS method for discrimination with state-of-the-act support vector

machine classifier (SVC) [15, 3, 13]. The advantage of using kernel PLS for
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dimensionalityreductionincomparison tokernelprincipalcomponents analysis

(PCA) [14,13]isdiscussedinthe case of discriminationproblems.

2 RHKS - basic definitions

A RKHS is uniquely defined by a positive definite kernel function K(x, y); i.e.

a symmetric function of two variables satisfying the Mercer theorem conditions

[7, 3]. Consider K(., .) to be defined on a compact domain X × X; X C R N.

The fact that for any such positive definite kernel there exists a unique RKHS

is well established by the Moore-Aronszjan theorem [i]. The form __(x, y) has

the following reproducing property

f(y) = (f(x),K(x,y))_ Vf • 9/,

where (.,-)n is the scalar product in _. The function K is called a reproducing
kernel for 9/.

It follows from Mercer's theorem that each positive definite kernel ._(x, y)

defined on a compact domain X x X can be written in the form

S

g(_,v) = _,¢,(x)¢,(v) S < 2, (1)
i=l

where (¢_(:)}_=1 are the eigenfunctions of the integral operator FK : L2(2() --+

L_(x)

(r_/)(x) = JzK(z,_)f(v)dv V/• Z_(X)
¢*

and {Ai > 0}S=l are the corresponding positive eigenvalues. The sequence

{¢i(.)}_s=l creates an orthonormat basis of 7-/and we can express any function

f • 7t as f(x) -- _M 1 ai¢i(x) for some ai • T4. This Mlows to define a scalar

product in 9/as

S S S
def aibi

i:I i=l i=I

and _he norm

Rewriting (I) in the form

S 2

i=l _/"

S

K(_,v) = _ v_,¢,(_)v_7¢,(y) = (¢(x) ¢(v)) = ¢(_)r,(y) _
i----1

(2)



it becomes clear that any kernel 7i'(x, y) also corresponds to a canonical (Eu-

clidean) dot product in a possibIy high-dirnensional space >- where the input

data are mapped by

_: X_5 v

x (v T¢l (x), v -Ts¢s(x)) •

The space .T is usually denoted as a feature space and {{v_i¢i(x)}S_=l,x E

/t7 as feat_re mappings. The number of basis functions ¢i(.) also defines the

dimensionality of )r. It is worth noting that we can also construct a RKHS and
a corresponding feature space by choosing a sequence of linearly independent

functions (not necessarily orthogonal) {¢_(x)}/s=l and positive numbers c_i to

define a series (in the case of S = oo absolutely and uniformly convergent)

3 Kernel Partial Least Squares

Because the PLS technique is not widely known we first provide a description of

linear PLS which will simplify our next description of its nonlinear kernel-based

variant [11].

Consider a general setting of the linear PLS algorithm to model the relation

between two data sets (blocks of observed variables) 2( and y. Denote by
x E 2( C 7__v an N-dimensional vector of variables in the first block of data

and similarly y E Y C _M denotes a vector of variables from the second set.

PLS models relations between these two blocks by means of latent variables.

Observing n data samples from each block of variables, PLS decomposes the

(n x N) matrix of zero-mean variables X and the (n x M) matrix of zero-mean
variables Y into the form

X = TP T +F

Y = UQ r + G (3)

where the T, U are (n x p) matrices of the extracted p orthogonal components

(scores, latent variables), the (N x p) matrix P and the (M x p) matrix Q

represent matrices of loadings and the (n x N) matrix F and the (n x M) matrix

G are the matrices of residuals. The PLS method, which in its classical form is

based on the nonlinear iterative partial least squares (NIPALS) algorithm [18],

finds weight vectors w, c such that

[cov(t, u)] 2 = [cov(Xw, Yc)] 2 = rnaxlq=N=l [eov(Xr, Ys)] 2

where cov(t, u) = tTu/n denotes the sample covariance between the two score

vectors (components). The NIPALS algorithm starts with random initialization



of the Y-score vector u and repeats

convergence:

1) w = xru/(uru)

2) IIwll--* 1
3) t = Xw

a sequence of the following steps until

4) c = yTt/(tTt)

5) u = Yc/(crc)
6) repeat steps 1. - 5. until convergence

However, it can be shown [5] that we can directly estimate the weight vector w
as the first eigenvector of the following eigenvalue problem

xTyyTxw = Aw (4)

The X-scores t are than given as

t=Xw (5)

We can similarly derive an eigenvalue problem for the extraction of t,u and c

estimates [5] and solve one of them for the computation of the other vectors.
The nonlinear kernel PLS method is based on mapping the original input data

i_t-o a high-dimensional-feature space _. -In this case we usually canmot compute

the vectors w and c.Thus, we need to reformulate the NIPALS algorithm into

its kernel variant [6, 1I]. Alternatively, we can directly estimate the score vector

t as the first eigenvector of the fo!lowing eigenvalue problem [5, 9] (this can be
easily shown by multiplying both sides of (4) by X matrix and using (5))

xxTyyTt = At (6)

The Y-scores u are than estimated as

u : YYTt

Now, consider a nonlinear transformation of x into a feature space _. Using

the straightforward connection between a RKHS and 5r we have extended the

linear PLS model into its nonlinear kernel form [Ii]. Effectively this extension
represents the construction of a linear PLS model in ._. Denote ¢I, as the (n × S)

matrix of mapped X-space data _(x) into an S-dimensional feature space _'.

Instead of an explicit mapping of the data we can use property (2) and write

where K represents the (n x n) kernel Gram matrix of the cross dot products

between all input data points {_(x)}_=l; i.e. K_.j = K(xi, xj) where K(., .) is a

selected kernel function. We can similarly consider a mapping of the second set

of variables y into a feature space 5rl and denote by _I, the (n × $1) matrix of

mapped ))-space data 9(y) into an $1-dimensional feature space _1- We can
write

•I'_ T : K1



where K1 similar to K represents the (n × n) kernel Gram matriz given by the

kernel function/(1 (., .). Using this notation we can reformulate the estimates

of t (6) and u (7) into its nonlinear kernel variant

KKlt = At (8)

u = Kit

At the beginning of this section we assumed a zero-mean regression model.

To centralize the mapped data in a feature space _ we can simply apply the

following procedure [14, 11]

K +-- (I 11_1_)K(I
1

- - --I,_I,_)T
7/ n

where I is an n-dimensional identity matrLx and 1_ represent the (n x 1) vector

with elements equal to one. The same is true for K1.

After the extraction of new score vectors t, u the matrices K and K: are

deflated by subtracting their rank-one approximations based on t and u. The

different forms of deflation correspond to different forms of PLS (see [17] for a
review); The PLS Mode A is based on rank-one deflation of individual block

matrices using corresponding score and loading vectors. This approach was

originally design by H. Wold [18] to model the relation between the different
blocks of data. Because (4) corresponds to the singular value decomposition

of the transposed cross-product matrix xTy, computation of all eigenvectors

from (4) at once involves implicit rank-one deflation of the overall transposed

cross-product matrix. This form of PLS was used in [12] and in accordance

with [17] we denote it as PLS-SB. The kernel analog of PLS-SB results from

the computation of all eigenvectors of (8) at once. PLS1 (one of the blocks

has single variable) and PLS2 (both blocks are multidimensional) as regression
methods use a different form of deflation which we describe in the next section.

3,1 Kernel PLS Regression

In kernel PLS regression we estimate a linear PLS regression model in a feature

space 5_. The data set Y represents a set of dependent output variables and, in

this scenario we do not have reason to consider a nonlinear mapping of the y

variables into a feature space 5vl. This simply means that we consider K1 =
yy=r and _-1 to be the original Euclidian 7_ M space. In agreement with the

t Pstandard linear PLS model we further assume the score variables { i}i=l are

good predictors of Y. We also assume a linear inner relation between the scores

of t and u; i.e.
U=TB+H

where B is the (p x p) diagonal matrix and H denotes the matrix of residuals.

In this cue, we can rewrite the decomposition of the Y matrix (3) as

Y=UQ T+F= (TB+H)Q T+F=TBQ T+(HQ T+F)



which defines the considered linear PLS regression model

Y = TC T + F*

where C T -- BQ z now denotes the (19× _) matrix of regressioncoe_cients

and F" --HQ T + F isthe Y-residualmatrix.

Taking intoaccount normalized scorest we definethe estimateof the PLS

regressionmode] in I as [II]

: KU(TTKU)-!TT Y = TTTy . <_J;°_

it is worth noting that different scalings of the individual Y-score vectors " _p{_i] i=1

do not influence this estimate. The deflation in the case of PLSl and PLS2 is

based on rank-one reduction of the • and Y matrices using a new extracted

score vector t at each step. It can be written in the kernel form as follows [I!]

K+-- (I-ttT)K(I-tt T) ; K1 +-(I-ttT)Kt(I-tt T)

This de_ation is based an the fact that we decompose the • matrix as _2 +--

- tp T :-_ - ttT_I ,, where p is the vector of loadings corresponding to the

-ex{ractec[ component t. Simitirl:_ for the Y m£trix _e 5gn _gr]%_ Y _- Y-tc T
y - ttTy.

Denote d m = U(TTKU)-ITTy "_ , m = 1,... ,M where the (n x 1) vector

Y'_ represents the m-th output variable. Then the solution of the kernel PLS

regression (9) for the m-th output variable can be written as

7%

=
i----1

which agrees with the solution of the regularized form of regression in I%KHS

given by the Representer theorem [!6, 11]. Using equation (9) we may also

interpret the kernel PLS model as a linear regression model of the form

P

i=1

where {t{(x)}[= 1 are the projections of the data point x onto the extracted p
components and c TM : TTy "_ is the vector of weights for the m-th regression
model.

t pAlthough the scores { i}i=l axe defined to be vectors in an S-dimensional
feature space 5r we may equally represent the scores to be functions of the

ori_nal input data x. Thus, the proposed kernel PLS regression technique
can be seen as a method of sequential construction of a basis of orthogonM.

functions {t{(x)}P=l which are evaluated at the discretized locations {x{}{=l. It
is important to note that the scores are extracted such that they increasingly

describe overall variance in the input data space and more interestingly also

describe the overall variance of the observed output data samples.



3.2 Kernel PLS Discrimination

ConsidertheordinaryleastsquaresregressionwithoutputsY to beanindi-
catorvectorcodingtwoclasseswith thevalues+i and-I, respectively.The
regressioncoe_cientvectorfromtheleast squares solution is than proportional

to the linear discriminant analysis (LDA) direction [4]. Moreover, if the num-

ber of samples in both classes is equall the intercepts are the same resulting in

the same decision rules. This close connection between LDA and least square

regression motivates the use of PLS for discrimination. Moreover, a very close

connection between Fisher's LDA (FDA) and PLS-SB methods for multi-class

discrimination has been shown in [2j. Using the fact that PLS can be seen as a
form of penalized canonical correlations analysis (CCA) I

[coy(t, u)] 2 = [cov(Xw, Yc)] 2 = var(Xw)[corr(Xw, Yc)]2var(Yc)

it was suggested [2] to remove the not meaningful _Uspace penalty var(Yc)
in the PLS discrimination scenario where the Y-block of data is coded in the

following way

y

/ lnl

0na

0n_

0,_I 0n: )

1,_ 0n2

0=, 1_,

Here, {n{}[=l denotes the number of samples in each class. This modified PLS

method is than based on eigen solutions of the between classes scatter matrix

which connects this approach to CCA or equivalently to FDA [4, 2]. More
interestingly, in the case of two classes the direction of only one PLS component

will be identical with the first PLS component found by the PLS1 method

with the Y-block represented by the vector with dummy variables coding two

classes. However, in the case of PLS1 we can extract additional components each

possessing the same similarity with directions computed with CCA on deflated

X-block matrices. This provides a more principled dimensionality reduction in

comparison to standard PCA based on the criterion of maximum data variation

in the X-space alone.

On several classification problems the use of kernel PCA for dimensionality

reduction and/or de-noising followed by linear SVC computed on this reduced

X-space data representation has shown good results in comparison to nonlinear

SVC using the original data representation [13, 14]. However, previous theoret-

ical results suggest to replace the kernel PCA data preprocessing step with the

more principled kernel PLS. The advantage of using linear SVC as the follow
up step is motivated by the construction of an optimal separating hyperplane in

the sense of maximizing of the distance to the closest point from either class

1In agreement with previous notation vat(.) and corr(., .) denotes _;he sample variance and

correlation, respectively.



 ethod/IKP,SSVC/SVC IR Favg. error [%] 10.6 4- 0.4 11.5 4- 0.7 I 10.8 4- 0.5 10.8 _+_0.6

Table 1: Comparison of results between kernel PLS with v-SVC (KPLS-SVC), C-
Support Vector Classifier (SVC), kernel Fisher's LDA (KFDA) and Radial Basis Func-

tions cI,assifier (RBF). The results represents average and standard deviation of the
misctassification error using 100 different test sets.

/15, 3, 13]. In comparison to nonlinear kernel FDA [8, 13] this may become more

suitable in the situation of non-Gaussian class distribution in a feature space _.

Moreover, when the data are not separable the SVC approach provides a way
to control the extent of this overlap.

4 Experiments

_,1_ an example of a two-class _,,o_,_;_;_+_,,,,,,,_o,_,,problem (Fig. l(le_)) _,_.........a_mon-
strate good results using the proposed combined method of nonlinear kernel-

based PLS components extraction and the subsequent linear _,-SVC [13] (de-
note this method KPLS-SVC). We have used the banana data set obtained

via http://_w, first, grad. de/-rae'csch. This data repository provides the

complete 100 partitions of training and testing data used in previous experi-
ments [10, 8, 13]. The repository also provides the value of the Gaussian ker-

nel K(x,y) = exp(-IIx- yll2/h) width parameter (h) found by 5-fold cross-

validation (CV) on the first five training data partitions and used by the C-SVC

classifier [13] and kernel FDA methods [8], respectively (on this data set the 5-

fold CV method results in the same value of the width for both of the methods,
h = 1). Thus, in all experiments we have used the Gaussian kernel with the

same width and we have applied the same CV strategy' for the selection of the

number of used kernel PLS components and the values of v parameter for v-

SVC. The final number of components and v value was set to be equal to the
median of the five different estimates.

In Table 1 we compare the achieved results with the results using different

methods but with identical data partitioning [10, 8, 13]. W'e see very good results

of the proposed KPLS-SVC method. We have further investigated the influence

of the number of selected components on the overall accuracy of KPLS-SVC. For
the fixed number of components the "optimal" value of the _, parameter was set

using the same CV strategy as described above. Results in Fig. 1(right) show

that when more than five PLS components are selected the method provides very
consistent, low misclassiflcation rates. Finally, in Fig. 2 we plot the projection

of the data from both classes onto the direction found by kernel FDA, using the
first component found by kernel PLS and the first component found by kernel
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Figure l: left: An example of training patterns (first training data partition was

used), right: Dependence of the averaged mJsclassificalion error on a number of PLS

cQmponents used. The standard dey!a_tjon_is represented b_kthe d0t_ed__lines._Fgr a
fixed number of components cross-validation (CV) was used to set I) parameter for

u-SVC, The cross point indicates the minimum misclassification error achieved. Star

indicates a misc]assification error when both, number of components and u value were

set by CV (see Table I).

PCA, respectively. While we see similarity and nice separation of two classes in

the case of kernel FDA and kernel PLS, the kernel PCA method fails to separate

the data using the first principal component.

5 Conclusions

A summary of the kernel PLS methodology in RKHS was pro_4ded. We have

shown that the method may be useful for the modeling of existing relations

between blocks of variables. With specific arrangement of one of the blocks of

variables we may use the technique for nonlinear regression or discrimination

problems. We have shown that the proposed technique of combining dimension-

ality reduction by means of kernel PLS and discrimination of the classes using

SVC methodology may result in performance comparable with the previously

used classification techniques. Moreover, the projection of _he high-dimensional

feature space data onto a small number of necessary PLS components resulting

in optimal or near optimal discrimination gives rise to the possibility of vi-

sual inspection of data separability providing more useful insight into the data

structure. Following the theoretical and practical results reported in [2] we also

argue that kernel PLS would be preferred to kernel PCA when a feature space

dimensionality reduction with respect to data discrimination is employed. The
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Figure 2: The values of top: d_ta projected onto the direction found by kernel Fisher

discriminant middle: the first kernel PLS component bottom: the first kernel PCA

principM component. The d_ta depicted in Fig. 1(left) were used.

proposed combination of kernel PLS with SVC can be useful in real world situ-

ations where we can expect overlaps among different classes with non-Gaussian

distribution.
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